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Abstract—To improve resource efficiency and design intel-
ligent scheduler for clouds, it is necessary to understand the
workload characteristics and machine utilization in large-scale
cloud data centers. In this paper, we perform a deep analysis on
a newly released trace dataset by Alibaba in September 2017,
consists of detail statistics of 11089 online service jobs and
12951 batch jobs co-locating on 1300 machines over 12 hours.
To the best of our knowledge, this is one of the first work to
analyze the Alibaba public trace. Our analysis reveals several
important insights about different types of imbalance in the
Alibaba cloud. Such imbalances exacerbate the complexity and
challenge of cloud resource management, which might incur
severe wastes of resources and low cluster utilization. 1) Spatial
Imbalance: heterogeneous resource utilization across machines
and workloads. 2) Temporal Imbalance: greatly time-varying
resource usages per workload and machine. 3) Imbalanced
proportion of multi-dimensional resources (CPU and memory)
utilization per workload. 4) Imbalanced resource demands and
runtime statistics (duration and task number) between online
service and offline batch jobs. We argue accommodating such
imbalances during resource allocation is critical to improve
cluster efficiency, and will motivate the emergence of new
resource managers and schedulers.

Keywords-Alibaba Trace, Imbalance, Container, Cloud Com-
puting, Resource Efficiency,

I. INTRODUCTION

Cloud datacenters usually comprise thousands of ma-
chines, providing highly reliable, efficient and scalable ser-
vices. Examples of typical cloud services including web
search, e-commerce systems, and social networks. With the
increasing popularity of cloud and data center computation,
users tend to share large hardware platforms. However,
effective resource management is very important to guar-
antee both quality of service and high resource utiliza-
tion [1][2][3][4][5][6][7][8].

Recent studies [9][10][11][12][13] revealed that most
cloud facilities and commercial clusters are operating at low
utilization. According to the data of Geithner and McKinsey
several years ago, the global server utilization seems to
be very low, which is only 6% to 12%. Even leveraging
virtualization technology, the utilization is still below 17%.
It probably incurs low cost-efficiency, energy-proportional
and scalability challenges of clouds.

∗Corresponding author

Co-locating online service and offline batch jobs on the
same cluster is shown to be an efficient approach to improve
cluster utilization in modern cloud data centers [14][15][2].
However, we find that Alibaba cluster reserved fix amounts
of resources for online services rather than flexible allo-
cations. Under such reservation mechanism, traditional co-
locating strategy is ineffective because batch jobs could not
leverage reserved idle resources of service jobs. Addition-
ally, contention and interference on shared resources can
cause latency spikes that violate the service-level objectives
of service jobs. Ensuring quality of service (QoS) for
latency-sensitive job is non-trivial in such environment.

By understanding the workload characteristics and ma-
chine utilization in large-scale cloud data centers, we could
provide predictable knowledges to cluster manager. Through
planning ahead and performing intelligent scheduling, we
could improve resource efficiency and avoid such interfer-
ences.

In this paper, we perform a deep analysis on a newly re-
leased trace dataset by Alibaba in September 2017, covering
1300 servers over 12 hours [16]. Alibaba Cloud is one of
the largest public cloud platforms in the world, processing
millions of tasks across hundreds of data centers everyday.
This trace includes runtime statistics of a hybrid cluster, on
which online service and offline batch jobs are co-located.

To the best of our knowledge, this is one of the first work
to analyze the public Alibaba trace. We explored runtime
status of the hybrid cluster, and showed several important
insights about imbalance in the cloud. Such imbalances
exacerbate the complexity and challenge of cloud resource
management. It includes:

• Spatial Imbalance: heterogeneous resource utilization
across machines and workloads.

• Temporal Imbalance: greatly time-varying resource us-
ages per workload and machine.

• Imbalanced proportion of multi-dimensional resources
(CPU and memory) utilization per workload.

• Imbalanced resource demands and runtime statistics
(duration and task number) between online service and
offline batch jobs.

Many modern resource managers are designed under the
assumption of ideal cluster environment. The commonly
occurred imbalance phenomenons we found in Alibaba trace
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Figure 1. The heat maps of CPU and memory utilization of machines in the cluster. The white portion indicates the lack of data in the trace. Red color
indicates high utilization while blue color indicates low utilization.

would lead to significant resource inefficiency and wastes.
We argue it is critical to accommodate such imbalances
during resource allocation to improve cluster efficiency.
They will also motivate the emergences of new resource
managers and schedulers.

II. THE DATASET

Alibaba released a new dataset ClusterData201708 in
September 2017, which contains a production cluster run-
time information during 12 hours period, and includes 1.3k
machines that run both online service and offline batch
jobs [16]. The data is motivated to address the low utilization
and resource inefficiency challenges of Alibaba cluster when
co-locating online services and batch jobs.

There are three types of data in the trace: machine
utilization and runtime information of both batch and on-
line service workloads. For confidentiality reasons, portion
information in the trace is obfuscated.

Machine utilization is described as two tables: the “ma-
chine events” table and the “machine resource utilization”
table. Capacities reflect the normalized multi-dimension
physical capacity per machine. Each dimension (CPU cores,
RAM size) is normalized independently.

Batch workloads are described as two tables: “instance”
table and “task” table. The user submits a batch workload
in the form of Job (which is not included in the trace).
Each job consists of multiple tasks, each forming a DAG
according to the data dependency. They are consisting of
multiple instances and executing different computing logics.
Instance is the smallest scheduling unit of batch workload.
All instances within a task execute exactly the same binary
code with identical multi-resource demands, but processing
different portions of data.

Online service jobs are described by two tables: “service
instance event” and “service instance usage”. The trace
includes only two types of instance events. One event for

creation, and another for finish. Event of creation records the
startime of a service instance, and event of remove indicates
the finish of an service instance. Each instance is the smallest
scheduling unit and running in a lightweight virtual machine
of Linux container (LXC). It could also be regarded as a
complete service job.

Either instances of batch or service workloads ex-
press their resource demands in the form of reserva-
tion, which is commonly used in modern resource man-
agers [2][6][4][3][7][8]. And their cluster manager of
Fuxi [8] leverages admission-control strategy for resource
allocation. The combination of above two mechanisms is
regarded to be the essential cause of low cluster utilization
and resource inefficiency in recent studies [5][13][17]. In
the following sections, we introduced several imbalanced
phenomenons in Alibaba cloud.

III. IMBALANCES OF MACHINES

Figure 1 plots the resource utilization per machine in the
cluster during 12 hours. The trace provided normalized CPU
and memory usages information per sampling time for each
machine. All the data are retrieved from “machine events”
and “machine resource utilization” table.

We had an interesting observation that CPU utilizations of
portion of machines (id from 400 to 600 and 900 to 1100) are
always higher than others while their memory utilizations are
relatively lower. And CPU utilizations of most machines are
gradually increasing during cluster running while memory
utilizations are decreasing. Thus we could always observe
the highest CPU utilization and lowest memory utilization
of machines at the end of trace period (from 11 to 12 hour).
In contrast, CPU is always idle at the beginning (from 0 to
3.5 hour) while memory keeps high load.

It demonstrated that there exists significant spatial imbal-
ance (heterogeneous resource utilization across machines)
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Figure 2. The CPU and memory utilization of machines during execution. The red line indicates the maximum utilization of all machines in the cluster,
the blue one indicates the average utilization and green one means minimum utilization of all machines.

and temporal imbalance (time-varying resource usages per
machine) of utilization for machines in cloud data center.

From Figure 2, we saw more fine-grained information
of resource usages per machine. We summarized average,
minimum and maximum utilization among 1300 machines
at each sampling time. Both the CPU and memory usages
are normalized

The average CPU utilization per machine is within 40%
and maximum maintains about 60% along the sampling pe-
riod. Average memory utilization per machine is within 60%
and maximum about 90%. The green line plots utilizations
of the machine whose utilization is the minimum among all
machines per sampling time. Both CPU and memory utiliza-
tion of such minimum usages are nearing zero. From hour 8
to 10, the maximum CPU utilization rapidly spikes, reaching
over 90%, while the average CPU usages maintain stable.
By comparing these huge gaps between minimum, average
and maximum usages of machines, we observed tremendous
spatial imbalance of utilization in cluster. It demonstrated
that cloud data centers need new schedulers to balance the
load and avoid hot spot of machine utilization, so as to
improve cluster efficiency. Differ from CPU usages, memory
usages maintain steady during that period. It also indicates
the proportion of multi-dimensional resources utilization
(CPU and memory) of workloads is imbalanced.

Additionally, we observed severe wastes and resource
inefficiency of CPU and memory resources in cluster. How-
ever, due to relatively low maximum usages of machines,
CPU utilization has the opportunity to be greatly improved
through comprehensively understanding workloads’ resource
demands and making proper reservations. Nevertheless, im-
proving memory utilization is challenging since job perfor-
mance is sensitive to the relatively high maximum usages
of machines. Simply decreasing the reservations to improve
cluster memory efficiency might lead to serious performance

degradation due to thrashing. Recent study [13] proposed
one solution by making better demands estimations. We
argue the cloud data center needs new resource managers
and schedulers to improve cluster resource efficiency by
avoiding above imbalanced and low utilization.

IV. IMBALANCES OF WORKLOADS

In the trace, workloads are classified into two categories.
One is long-term service job, another is short-term batch
job. Each service instance belongs to one job, and is running
within a Linux container for 12 hours. While each instance
of batch jobs belongs to one task, and is running for seconds
or minutes. Multiple tasks compose of one batch job. Detail
runtime statistics of batch workloads are shown in Table I.

Each job commonly has several tasks, but the maximum
one has 156. There are three types of status for batch tasks,
including normally terminated, failed and waiting due to
preemption. Most tasks are normally terminated, while over
2000 are waiting. The majority of tasks own hundreds of
instances, while some has an extremely large number of
64486. The corresponding average durations of instances and
tasks are 129 and 192 seconds respectively. The maximum
durations are 29558 and 29585 seconds, while both of the
minimum durations are less than 1 second. By diving into the
task execution information, we found the longest task that
ran over 8 hours was consisting of several longest instances
that were executing at the same time. Thus their maximum
durations are similar.

In contrast, each service job consists of only one long-
term instance. There are totally 11089 service instances
(jobs) running for the whole 12 hours (43200 seconds). It
illustrates the imbalanced numbers and durations of run-
time instances for service and batch jobs. By leveraging
such imbalanced knowledges, one could schedule and co-
locate batch and service instances in a more efficient way.
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Table I
STATISTICS OF BATCH JOBS

Status Number
Failed tasks 1126
Terminated tasks 67013
Waiting tasks 8847
Average instance number per task 152
Maximum instance number per task 64486
Minimum instance number per task 1
Average task number per job 6
Maximum task number per job 156
Minimum task number per job 1
Total instances 15186017
Total tasks 76986
Total jobs 12951
Average instance duration 129 (seconds)
Maximum instance duration 29558 (seconds)
Mimimum instance duration ≤ 1 (seconds)
Average task duration 192 (seconds)
Maximum task duration 29585 (seconds)
Mimimum task duration ≤ 1 (seconds)

To make efficient resource reservations, it is necessary to
understand the workload characteristics and demands. We
studied the distribution of resource requests, actual usages
and corresponding utilization in the following subsections.

A. Imbalances of Resource Demands

1) Batch Workloads: For each job, we summarized its
average requested and used CPU numbers per task in Fig-
ure 3. We accumulated the CPU and normalized memory
requests of all instances within a task. And accumulated
requested resources of all tasks within the same job, then
divided by corresponding task numbers to get the average
values. However, the scale of the normalized memory size
per task would not be from 0 to 1, which we ignored.

We could see most of the batch jobs requested 1 to
100 cores of CPU for each task, while the maximum re-
quested number is more than 1000. In contrast, we observed
most jobs used 0.01 to 1 core CPU per task while very
few used more than 100 cores. Additionally, we observed
many jobs are waiting for resources while few jobs occu-
pied overwhelming cluster CPU resource (more than 100
cores per job). Such spatial imbalance of CPU usages
across workloads probably leads to the bottleneck of cluster
throughput, while exacerbating inefficiency of resources.
New scheduling algorithms are essential to accommodate
imbalanced loads and demands of workloads.

In Figure 4 and Figure 5, we summarized the average
requested and used CPU numbers per instance for each
task, as well as normalized memory sizes. We accumulated
all the CPU numbers and normalized memory sizes of
instances within a task. And retrieve the average value
through dividing the sum by corresponding task’s instance
numbers.

Most tasks request either 0.5 or 1 core CPU per instance,
while few requests 6 or 8 cores (hard to distinguish in
figure). The used CPU numbers are mainly between 0.1

and 0.7. Small portion of tasks’ average used CPU numbers
per instance are between 0.7 and 1.2. As we can see,
most tasks’ instances are operating at half of the CPU
utilization (used to requests). Due to the mechanism of
resource reservation, cloud datacenters are suffering severe
inefficiency and wastes of resources.

From Figure 5, the majority of tasks requested normalized
memory sizes between 0.05 and 0.15 per instance. While
they commonly used 0.001 to 0.05 sizes. However, since
the requested and used memory sizes per instance are
normalized independently in two separate tables, it is not
accurate to observe memory utilizations by comparing them
directly. It’s shown that most tasks are consuming only small
portions of memory, while few occupied the majorities. It
confirms the existences of spatial imbalance across work-
loads, and highlights the motivation to design new allocation
mechanisms to handle complexity of scheduling.

2) Service Workloads: Each service instance is running
within one Linux container for 12 hours. Figure 6 shows the
average, maximum and minimum ratio of resource used to
requests of all instances at each sampling time. It indicates
the average time-varying utilization of CPU and memory per
service instance.

Most service instances stably used less than 10% CPU
resources they requested during executions. However, there
were always some portions of instances consuming 60%
to 90% resources (red maximum line), while some used
near-to-zero cores (green minimum line). Such spatial and
temporal imbalances across service instances make it
knotty to make proper reservations. Balancing the trade-
offs between performance and resource efficiency would be
the principal challenge for cluster managers. The normalized
average memory utilization is stably 45%, while maximum
keeps 79% and minimum maintains 1%. Unlike resources of
CPU, it is shown that there are opportunities to make better
reservations to improve memory utilization [13].

Differ from the time-varying average utilizations of all
instances in Figure 6 (spatial average), Figure 7 plots the
CDF of instances’ average CPU and memory utilizations of
12 hours (temporal average). The traces provides average
CPU and memory utilization every 5 minutes per instance.
We list the maximum and minimum values of 5-minute
average utilization during 12 hours per instance, and plot
the CDF. Similarly, we add up all 5-minute utilizations of
12 hours, and dividing it by intervals (12 ∗ 60 ÷ 5 = 144)
to achieve the average CDF curve.

There are 50% of instances whose average CPU utilization
of 12 hours reached up to 0.05, maximum 0.2 and minimum
0.02. There are even 90% of instances whose maximum
CPU utilization of 12 hours only reached up to 0.4, which
illustrates extremely huge wastes of reserved CPU numbers.
Unlike the idle of most CPU cores, memory utilization is
a little bit higher. There were 50% of instances reaching
about 0.45, 0.5 and 0.35 respectively. Comparing with
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Figure 3. Job counts by average CPU request numbers (left) and average CPU used numbers (right) per task. Note the log-scale on the plot’s x-axis.
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Figure 4. Task counts by average CPU request numbers (left) and used numbers per instance (right). Note the log-scale on the plot’s x-axis.
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Figure 6. The ratio of used CPU and memory to requested per sampling time. The red, blue, green lines indicate the maximum, average and minimum
ratio of all service instances respectively.

Figure 6, it identifies imbalanced proportion between CPU
and memory utilization for service instances. Resource
allocation strategy should take such imbalance into account,
and design better fair share algorithm of multi-dimensional
resources.

Users always tend to over-provision resources to guaran-
tee SLA for latency-sensitive production services. However,
such extremely low utilizations would lead to incredible
high costs for large-scale cloud data center. Meanwhile,
online service jobs reserved and hold resources forever,
which might cause imbalanced cluster loads (hot spots) or
job starvation due to insufficient resources on constrained
hosts. By considering the results of Section IV-A1 and
Table I, batch and online service jobs are shown to have
serious imbalanced instance numbers, resource utiliza-
tion and duration. Modern schedulers could take above
runtime phenomenons of hybrid cluster into account, and
adopts sophistical co-locating strategy to avoid imbalance
and maximize resource efficiency.

Figure 8 shows the container’s moving hourly average
of CPU load. We find that the maximum CPU load is less
than 60 percents, and the average CPU load is lower than
10%, which means most of containers use less than 10
percents of the CPU. From the beginning time of sampling,
the maximum Linux CPU load is high, over 50 percents.
But after less than 1 hour, the maximum load dropped
drastically, and then the maximum CPU load keeps stable
and occasionally fluctuating. As for the average CPU load,
it is almost zero, which means most of machines are idle in
the cluster. The imbalance of CPU load causes the severe
resource waste.

The top of Figure 8 shows the hourly average and
maximum CPU loads of all service instances. We observed
the maximum CPU loads are below 60% while the average
are below 10%. Additionally, CPU loads are about 60% at
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Figure 7. CDF of instances’ average resource utilizations of 12 hours.

beginning and drastically drop to 20% one hour later. After-
wards, the maximum loads fluctuate over time while average
ones keep stably few. Most instances are idle in cluster.
We could see obvious spatial and temporal imbalances
across service workloads, which increase the complexity of
scheduling.

The bottom of Figure 8 displays the hourly average and
maximum CPU loads of all machines. The fluctuation trends
of both maximum and average loads are similar to contain-
ers’. However, the gaps between highest and lowest usages
are even bigger. At beginning, the machine’s maximum CPU
loads are even over 1. While the minimum ones are still close
to 0. The average CPU loads are about 20%. It confirmed
the existences of spatial and temporal imbalances across
machines.
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B. Imbalances of Batch Job Durations

Figure 9 plots the duration distributions of batch jobs.
We exploited the difference between durations of earliest
created task and latest finished task within the same job, to
indicate job running time. 90% of jobs run less than 0.19
hours, while the longest one is running up to 10 hours. In
detail, over 12481 jobs run less than half of an hour and over
12705 jobs run less than 1 hour. Short jobs overwhelmingly
occupied the cluster. It also identifies the imbalances of
job durations. One could take these phenomenons into
account, and leverage proper scheduling algorithm such as
SJF (Shortest Job First) to speedup executions of short jobs,
while maximizing cluster makespan.

In addition, the large proportion of short jobs give us
opportunities to improve quality of co-locating choices in
hybrid cluster. We have more opportunities to select other
proper jobs to avoid interferences and contentions between
batch and service jobs. A scheduler that adequately exploit-
ing such imbalances could greatly improve cluster efficiency
and guarantee SLA for service jobs.

C. Discussion

Due to the reservation mechanism and imbalanced phe-
nomenons in Alibaba cloud data center, co-locating service
and batch jobs is ineffective to improve cluster efficiency.
In the future, one could leverage flexible allocations of
containers and knowledges of imbalances to greatly improve
resource efficiency in hybrid cluster.

In addition, by considering data locality, the imbalance
phenomenons would be aggravated during scheduling. How
to make proper resource allocation and scheduling deci-
sions to balance the trade-offs between imbalance relief,
data locality and SLA (performance) is challenging. It also
becomes our future research direction.

V. RELATED WORK

Google released a 29-day trace of over 25 million tasks
across 12,500 heterogeneous machines in 2011 [18]. There
are several important works on analyzing Google trace
from different perspectives. Zhang et al., focused on char-
acterizing run-time task resource usages of CPU, memory
and disk [19]. Reiss et al., characterized cluster resource
requests, distributions, and the actual resource utilizations.
They found heterogeneity and dynamics are two important
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characteristics [12][20]. Liu et al., characterized how the
machines in cluster are managed and when the workloads
submitted during a 29-day period behave. They focus on
the frequency and pattern of machine maintenance events,
job and task-level workload behaviors, and how the overall
cluster resources are utilized [21]. Abdul-Rahman et al.,
considered user behaviors in composing applications from
the perspective of topology, maximum requested computa-
tional resources, and types of workloads [22]. Sharma et
al., focused on the task placement constraints in Google
compute cluster and developed methodologies for incorpo-
rating task placement constraints and machine properties
into performance benchmarks of large compute clusters [23].
Di et al., compared the differences between a Google data
center and other Grid/HPC systems, focus on loads of jobs
and machines [24].

While other works use machine learning method, such
as k-means clustering, to study the workload characteristics.
Mishra et al., described an approach to workload classifi-
cation based on k-means and its application to the Google
Cloud Backend [25]. Di et al., computed the valuable statis-
tics about task events and resource utilization for Google
applications, based on various types of resources (such as
CPU, memory) and execution types (e.g., whether they can
run batch tasks or not). They also classified applications via
a K-means clustering algorithm with optimized number of
sets, based on task events and resource usage [26]. Chen et
al., identified common groups of jobs by k-means clustering.
They also did correlation analysis between job semantics
and job behavior, leading to helpful perspectives on capacity
planning and system tuning [27].

While our work is one of the first analysis on Alibaba
trace, which is released in September 2017. Furthermore,
we analyze this dataset from a new perspective and find
several interesting imbalance phenomena in the cloud.

VI. CONCLUSIONS

Understand machine characteristics and workload behav-
iors in large-scale cloud data centers is critical to maximize
cluster resource efficiency. In this paper, we performed a
deep analysis on a newly released trace dataset by Alibaba
Group in September 2017, covering 1300 servers over 12
hours. To the best of our knowledge, this is one of the first
work to analyze the Alibaba public trace.

We explored detail runtime characteristics of a hybrid
cluster that co-locates both online service and offline batch
jobs, and discovered several interesting insights about imbal-
ance in the cloud. Such imbalances exacerbate the complex-
ity and challenges of cloud cluster management, incurring
severe resource inefficiency. We argue accommodating im-
balances of both machines and workloads is critical to cluster
efficiency, and will motivate the design and emergences of
new resource managers and schedulers.
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